Optimal frequency measurements with quantum probes

Simon Schmitt, Tuvia Gefen, Daniel Louzon, Christian Osterkamp, Nicolas Staudenmaier, Johannes Lang, Matthew Markham, Alex Retzker, Liam P. McGuinness*, Fedor Jelezko

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Precise frequency measurements are important in applications ranging from navigation and imaging to computation and communication. Here we outline the optimal quantum strategies for frequency discrimination and estimation in the context of quantum spectroscopy, and we compare the effectiveness of different readout strategies. Using a single NV center in diamond, we implement the optimal frequency discrimination protocol to discriminate two frequencies separated by 2 kHz with a single 44 μs measurement, a factor of ten below the Fourier limit. For frequency estimation, we achieve a frequency sensitivity of 1.6 µHz/Hz2 for a 1.7 µT amplitude signal, which is within a factor of 2 from the quantum limit. Our results are foundational for discrimination and estimation problems in nanoscale nuclear magnetic resonance spectroscopy.

Original languageAmerican English
Article number55
Journalnpj Quantum Information
Volume7
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, Crown.

Fingerprint

Dive into the research topics of 'Optimal frequency measurements with quantum probes'. Together they form a unique fingerprint.

Cite this