Optimizing the timing of unmanned aerial vehicle image acquisition for applied mapping ofwoody vegetation species using feature selection

Gilad Weil*, Itamar M. Lensky, Yehezkel S. Resheff, Noam Levin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Most recent studies relating to the classification of vegetation species on the individual level use cutting-edge sensors and follow a data-driven approach, aimed at maximizing classification accuracy within a relatively small allocated area of optimal conditions. However, this approach does not incorporate cost-benefit considerations or the ability of applying the chosen methodology for applied mapping over larger areas with higher natural heterogeneity. In this study, we present a phenology-based cost-effective approach for optimizing the number and timing of unmanned aerial vehicle (UAV) imagery acquisition, based on a priori near-surface observations. A ground-placed camera was used in order to generate annual time series of nine spectral indices and three color conversions (red, green and blue to hue, saturation and value) in four different East Mediterranean sites that represent different environmental conditions. After outliers' removal, the time series dataset represented 1852 individuals of 12 common vegetation species and annual herbaceous patches. A feature selection process was used for identifying the optimal dates for species classification in every site. The feature selection can be designed for various objectives, e.g., optimization of overall classification, discrimination between two species, or discrimination of one species from all others. In order to evaluate the a priori findings, a UAV was flown for acquiring five overhead multiband orthomosaics (five bands in the visible-near infrared range based on the five optimal dates identified in the feature selection of the near-surface time series of the previous year. An object-based classification methodology was used for the discrimination of 976 individuals of nine species and annual herbaceous patches in the UAV imagery, and resulted in an average overall accuracy of 85% and an average Kappa coefficient of 0.82. This cost-effective approach has high potential for detailed vegetation mapping, regarding the accessibility of UAV-produced time series, compared to hyper-spectral imagery with high spatial resolution which is more expensive and involves great difficulties in implementation over large areas.

Original languageAmerican English
Article number1130
JournalRemote Sensing
Volume9
Issue number11
DOIs
StatePublished - 1 Nov 2017

Bibliographical note

Publisher Copyright:
© 2017 by the authors.

Keywords

  • Feature selection
  • Mediterranean vegetation
  • Near-surface observations
  • Unmanned aircraft vehicles
  • Vegetation species classification

Fingerprint

Dive into the research topics of 'Optimizing the timing of unmanned aerial vehicle image acquisition for applied mapping ofwoody vegetation species using feature selection'. Together they form a unique fingerprint.

Cite this