Abstract
The quantum well spectra orientation dependence of cubic semiconductors is studied through a simplification of the valence-subband dispersion relation, applicable for the three symmetrically oriented (perpendicular to the lattice symmetry axes) quantum wells. The semianalytical treatment which is based on the Kohn-Luttinger formalism, incorporates the effect of strain, and is generalized for gapless semiconductors as well as for III-V compounds. The rectangular and hexagonal in-plane symmetries of the 011 and 111 films, respectively, are studied by calculating the full subband dispersion in these orientations for GaAs, InAs, Ge, HgTe, and α-Sn. The rectangular symmetry of 011 films can result in spectral saddle points at k=0. Orientation is also found to be an important parameter in tailoring surface state branches in gapless semiconductors.
Original language | American English |
---|---|
Pages (from-to) | 10857-10868 |
Number of pages | 12 |
Journal | Physical Review B |
Volume | 51 |
Issue number | 16 |
DOIs | |
State | Published - 1995 |