Orientation as a key parameter in the valence-subband-structure engineering of quantum wells

G. Shechter*, L. D. Shvartsman, J. E. Golub

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The quantum well spectra orientation dependence of cubic semiconductors is studied through a simplification of the valence-subband dispersion relation, applicable for the three symmetrically oriented (perpendicular to the lattice symmetry axes) quantum wells. The semianalytical treatment which is based on the Kohn-Luttinger formalism, incorporates the effect of strain, and is generalized for gapless semiconductors as well as for III-V compounds. The rectangular and hexagonal in-plane symmetries of the 011 and 111 films, respectively, are studied by calculating the full subband dispersion in these orientations for GaAs, InAs, Ge, HgTe, and α-Sn. The rectangular symmetry of 011 films can result in spectral saddle points at k=0. Orientation is also found to be an important parameter in tailoring surface state branches in gapless semiconductors.

Original languageEnglish
Pages (from-to)10857-10868
Number of pages12
JournalPhysical Review B
Volume51
Issue number16
DOIs
StatePublished - 1995

Fingerprint

Dive into the research topics of 'Orientation as a key parameter in the valence-subband-structure engineering of quantum wells'. Together they form a unique fingerprint.

Cite this