TY - JOUR
T1 - Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons
AU - Wilson, Charles J.
AU - Goldberg, Joshua A.
PY - 2006/1
Y1 - 2006/1
N2 - Striatal cholinergic interneurons recorded in slices exhibit three different firing patterns: rhythmic single spiking, irregular bursting, and rhythmic bursting. The rhythmic single-spiking pattern is governed mainly by a prominent brief afterhyperpolarization (mAHP) that follows single spikes. The mAHP arises from an apamin-sensitive calcium-dependent potassium current. A slower AHP (sAHP), also present in these neurons, becomes prominent during rhythmic bursting or driven firing. Although not apamin sensitive, the sAHP is caused by a calcium-dependent potassium conductance. It is not present after blockade of calcium current with cadmium or after calcium is removed from the media or when intracellular calcium is buffered with bis-(o-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid. It reverses at the potassium equilibrium potential. It can be generated by subthreshold depolarizations and persists after blockade of sodium currents by tetrodotoxin. It is slow, being maximal ∼1 s after depolarization onset, and takes several seconds to decay. It requires >300-ms depolarizations to become maximally activated. Its voltage sensitivity is sigmoidal, with a half activation voltage of -40 mV. We conclude the sAHP is a high-affinity apamin-insensitive calcium-dependent potassium conductance, triggered by calcium currents partly activated at subthreshold levels. In combination with those calcium currents, it accounts for the slow oscillations seen in a subset of cholinergic interneurons exhibiting rhythmic bursting. In all cholinergic interneurons, it contributes to the slowdown or pause in firing that follows driven activity or prolonged subthreshold depolarizations and is therefore a candidate mechanism for the pause response observed in cholinergic neurons in vivo.
AB - Striatal cholinergic interneurons recorded in slices exhibit three different firing patterns: rhythmic single spiking, irregular bursting, and rhythmic bursting. The rhythmic single-spiking pattern is governed mainly by a prominent brief afterhyperpolarization (mAHP) that follows single spikes. The mAHP arises from an apamin-sensitive calcium-dependent potassium current. A slower AHP (sAHP), also present in these neurons, becomes prominent during rhythmic bursting or driven firing. Although not apamin sensitive, the sAHP is caused by a calcium-dependent potassium conductance. It is not present after blockade of calcium current with cadmium or after calcium is removed from the media or when intracellular calcium is buffered with bis-(o-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid. It reverses at the potassium equilibrium potential. It can be generated by subthreshold depolarizations and persists after blockade of sodium currents by tetrodotoxin. It is slow, being maximal ∼1 s after depolarization onset, and takes several seconds to decay. It requires >300-ms depolarizations to become maximally activated. Its voltage sensitivity is sigmoidal, with a half activation voltage of -40 mV. We conclude the sAHP is a high-affinity apamin-insensitive calcium-dependent potassium conductance, triggered by calcium currents partly activated at subthreshold levels. In combination with those calcium currents, it accounts for the slow oscillations seen in a subset of cholinergic interneurons exhibiting rhythmic bursting. In all cholinergic interneurons, it contributes to the slowdown or pause in firing that follows driven activity or prolonged subthreshold depolarizations and is therefore a candidate mechanism for the pause response observed in cholinergic neurons in vivo.
UR - http://www.scopus.com/inward/record.url?scp=33644808653&partnerID=8YFLogxK
U2 - 10.1152/jn.00630.2005
DO - 10.1152/jn.00630.2005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16162828
AN - SCOPUS:33644808653
SN - 0022-3077
VL - 95
SP - 196
EP - 204
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 1
ER -