Abstract
A semiclassical wave packet propagating in a dissipationless Fermi gas inevitably enters a "gradient catastrophe" regime, where an initially smooth front develops large gradients and undergoes a dramatic shock-wave phenomenon. The nonlinear effects in electronic transport are due to the curvature of the electronic spectrum at the Fermi surface. They can be probed by a sudden switching of a local potential. In equilibrium, this process produces a large number of particle-hole pairs, a phenomenon closely related to the orthogonality catastrophe. We study a generalization of this phenomenon to the nonequilibrium regime and show how the orthogonality catastrophe cures the gradient catastrophe, by providing a dispersive regularization mechanism.
Original language | American English |
---|---|
Article number | 246402 |
Journal | Physical Review Letters |
Volume | 97 |
Issue number | 24 |
DOIs | |
State | Published - 2006 |
Externally published | Yes |