PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation

Tal Reiss*, Niv Cohen*, Liron Bergman, Yedid Hoshen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

146 Scopus citations

Abstract

Anomaly detection methods require high-quality features. In recent years, the anomaly detection community has attempted to obtain better features using advances in deep self-supervised feature learning. Surprisingly, a very promising direction, using pre-trained deep features, has been mostly overlooked. In this paper, we first empirically establish the perhaps expected, but unreported result, that combining pre-trained features with simple anomaly detection and segmentation methods convincingly outperforms, much more complex, state-of-the-art methods. In order to obtain further performance gains in anomaly detection, we adapt pre-trained features to the target distribution. Although transfer learning methods are well established in multi-class classification problems, the one-class classification (OCC) setting is not as well explored. It turns out that naive adaptation methods, which typically work well in supervised learning, often result in catastrophic collapse (feature deterioration) and reduce performance in OCC settings. A popular OCC method, DeepSVDD, advocates using specialized architectures, but this limits the adaptation performance gain. We propose two methods for combating collapse: i) a variant of early stopping that dynamically learns the stopping iteration ii) elastic regularization inspired by continual learning. Our method, PANDA, outperforms the state-of-the-art in the OCC, outlier exposure and anomaly segmentation settings by large margins.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages2805-2813
Number of pages9
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE

Fingerprint

Dive into the research topics of 'PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation'. Together they form a unique fingerprint.

Cite this