TY - JOUR
T1 - Parallel topology of genetically fused EmrE homodimers
AU - Steiner-Mordoch, Sonia
AU - Soskine, Misha
AU - Solomon, Dalia
AU - Rotem, Dvir
AU - Gold, Ayala
AU - Yechieli, Michal
AU - Adam, Yoav
AU - Schuldiner, Shimon
PY - 2008/1/9
Y1 - 2008/1/9
N2 - EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed.
AB - EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed.
KW - Ion-coupled transport
KW - Membrane protein evolution
KW - Membrane protein structure
KW - Membrane protein topology
KW - Multidrug transporters
UR - http://www.scopus.com/inward/record.url?scp=38049069768&partnerID=8YFLogxK
U2 - 10.1038/sj.emboj.7601951
DO - 10.1038/sj.emboj.7601951
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 18059473
AN - SCOPUS:38049069768
SN - 0261-4189
VL - 27
SP - 17
EP - 26
JO - EMBO Journal
JF - EMBO Journal
IS - 1
ER -