Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci

Assaf Mahadav, Dan Gerling, Yuval Gottlieb, Henryk Czosnek, Murad Ghanim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


Background: The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and the viruses it transmits, are a major constraint to growing vegetable crops worldwide. Although the whitefly is often controlled using chemical pesticides, biological control agents constitute an important component in integrated pest management programs, especially in protected agriculture. One of these agents is the wasp Eretmocerus mundus (Mercet) (Hymenoptera: Aphelinidae). E. mundus lays its egg on the leaf underneath the second-third instar nymph of B. tabaci. First instars of the wasp hatch and penetrate the whitefly nymphs. Initiation of parasitization induces the host to form a capsule composed of epidermal cells around the parasitoid. The physiological and molecular processes underlying B. tabaci-E. mundus interactions have never been investigated. Results: We used a cDNA microarray containing 6,000 expressed sequence tags (ESTs) from the whitefly genome to study the parasitoid-whitefly interaction. We compared RNA samples collected at two time points of the parasitization process: when the parasitoid first instar starts the penetration process and once it has fully penetrated the host. The results clearly indicated that genes known to be part of the defense pathways described in other insects are also involved in the response of B. tabaci to parasitization by E. mundus. Some of these responses included repression of a serine protease inhibitor (serpin) and induction of a melanization cascade. A second set of genes that responded strongly to parasitization were bacterial, encoded by whitefly symbionts. Quantitative real-time PCR and FISH analyses showed that proliferation of Rickettsia, a facultative secondary symbiont, is strongly induced upon initiation of the parasitization process, a result that supported previous reports suggesting that endosymbionts might be involved in the insect host's resistance to various environmental stresses. Conclusion: This is the first study to examine the transcriptional response of a hemipteran insect to attack by a biological control agent (hymenopterous parasitoid), using a new genomic approach developed for this insect pest. The defense response in B. tabaci involves genes related to the immune response as described in model organisms such as Drosophila melanogaster. Moreover, endosymbionts of B. tabaci appear to play a role in the response to parasitization, as supported by previously published results from aphids.

Original languageAmerican English
Article number342
JournalBMC Genomics
StatePublished - 18 Jul 2008
Externally publishedYes

Bibliographical note

Funding Information:
The authors wish to thank Dr. Shirley Horn-Saban from the Microarrays Unit at the Biological Services Department of the Weizmann Institute of Science for help in printing and scanning the microarrays. This research was supported by Research Grant No. IS-4062-07 from the United States-Israel Binational Agricultural Research and Development Fund (BARD) to MG and HC, and supported in part by the Israel Science Foundation Research Grant No. 884/07 to MG and HC. This is Contribution 502/08 from the ARO, The Volcani Center, Bet Dagan, Israel.


Dive into the research topics of 'Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci'. Together they form a unique fingerprint.

Cite this