Passivity Deformation Approach for the Thermodynamics of Isolated Quantum Setups

Raam Uzdin, Saar Rahav

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Recently implemented quantum devices such as quantum processors and quantum simulators combine highly complicated quantum dynamics with high-resolution measurements. We present a passivity deformation methodology that sets constraints on the evolution of such quantum devices. The approach yields bounds that are often tighter, and thus more predictive, than the quantum microscopic analogue of the second law of thermodynamics. In particular, (i) it yields tight bounds even when the environment is microscopic; (ii) it successfully handles the ultracold limit; (iii) it enables one to account for constrained dynamics; and (iv) it bounds observables that do not appear in the second law of thermodynamics. Furthermore, this framework provides insights into nonthermal environments, correlated environments, coarse graining in microscopic setups, and the ability to detect heat leaks. Our findings can be explored and used in physical setups such as trapped ions, superconducting circuits, neutral atoms in optical lattices, and more.

Original languageEnglish
Article number010336
JournalPRX Quantum
Volume2
Issue number1
DOIs
StatePublished - Jan 2021

Bibliographical note

Publisher Copyright:
© 2021 authors. Published by the American Physical Society.

Fingerprint

Dive into the research topics of 'Passivity Deformation Approach for the Thermodynamics of Isolated Quantum Setups'. Together they form a unique fingerprint.

Cite this