Patient specific quantitative analysis of fracture fixation in the proximal femur implementing principal strain ratios. Method and experimental validation

Eran Peleg*, Maarten Beek, Leo Joskowicz, Meir Liebergall, Rami Mosheiff, Cari Whyne

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Computational patient-specific modeling has the potential to yield powerful information for selection and planning of fracture treatments if it can be developed to yield results that are rapid, focused and coherent from a clinical perspective. In this study we introduce the utilization of a principal strain fixation ratio measure (SR) defined as the ratio of principal strains that develop in a fixated bone relative to the principal strains that develop in the same bone in an intact state. The SR field output variable is theoretically independent of load amplitude and also has a direct clinical interpretation with SR<1-a representing stress shielding and SR>1+b representing overstressed bone. A combined experimental and numerical study was performed with cadaveric proximal femora (n=6) intact and following fracture fixation to quantify the performance of the SR variable in terms of accuracy and sensitivity to uncertainties in density-elasticity relationships and load amplitude as model input variables. For a given axial compressive force the SR field output variable was found to be less sensitive to changes in density-elasticity relationships and the response function to be more accurate than strain values themselves; errors were reduced by 44% on comparing SR with strain in the fixated model. In addition, the experimental data confirmed the assumption that the SR values behave independent of load amplitude. The load independent behavior of SR and its direct clinical interpretation may ultimately provide an appropriate and easily understood comparative computational measure to choose between patient specific fracture fixation alternatives.

Original languageEnglish
Pages (from-to)2684-2688
Number of pages5
JournalJournal of Biomechanics
Volume43
Issue number14
DOIs
StatePublished - 19 Oct 2010

Bibliographical note

Funding Information:
Support for this fellowship work was received from the OTC foundation.

Keywords

  • Extra-medular implant
  • Fracture fixation
  • Patient specific
  • Strain ratio

Fingerprint

Dive into the research topics of 'Patient specific quantitative analysis of fracture fixation in the proximal femur implementing principal strain ratios. Method and experimental validation'. Together they form a unique fingerprint.

Cite this