Abstract
In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.
Original language | English |
---|---|
Pages (from-to) | 75-80 |
Number of pages | 6 |
Journal | Extremophiles |
Volume | 18 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2014 |
Bibliographical note
Funding Information:Acknowledgments This work was supported by grant no. 1103/10 from the Israel Science Foundation. This study was performed in the framework of the activities of the Minerva Center on The Emergence and Evolution of Early Life under Extreme Planetary Conditions.
Keywords
- Anaerobic respiration
- Haloarcula
- Haloferax
- Halophilic archaea
- Mars
- Perchlorate