TY - JOUR
T1 - Persistence of cyprinid herpesvirus 3 in infected cultured carp cells
AU - Dishon, Arnon
AU - Davidovich, Maya
AU - Ilouze, Maya
AU - Kotler, Moshe
PY - 2007/5
Y1 - 2007/5
N2 - Cyprinid herpesvirus 3 (CyHV-3), previously designated carp interstitial nephritis and gill necrosis virus or koi herpesvirus, is the cause of a worldwide mortal disease of koi and carp. Morphologically, the virus resembles herpesviruses, yet it bears a genome of 277 to 295 kbp, which is divergent from most of the genomic sequences available in GenBank. The disease afflicts fish in the transient seasons, when the water temperature is 18 to 28°C, conditions which permit virus propagation in cultured cells. Here we report that infectious virus is preserved in cultured cells maintained for 30 days at 30°C. CyHV-3-infected vacuolated cells with deformed morphology converted to normal, and plaques disappeared following shifting up of the temperature and reappeared after transfer to the permissive temperature. Viral propagation and viral gene transcription were turned off by shifting cells to the nonpermissive temperature. Upon return of the cells to the permissive temperature, transcription of viral genes was reactivated in a sequence distinguished from that occurring in naive cells following infection. Our results show that CyHV-3 persists in cultured cells maintained at the nonpermissive temperature and suggest that viruses could persist for long periods in the fish body, enabling a new burst of infection upon a shift to a permissive temperature.
AB - Cyprinid herpesvirus 3 (CyHV-3), previously designated carp interstitial nephritis and gill necrosis virus or koi herpesvirus, is the cause of a worldwide mortal disease of koi and carp. Morphologically, the virus resembles herpesviruses, yet it bears a genome of 277 to 295 kbp, which is divergent from most of the genomic sequences available in GenBank. The disease afflicts fish in the transient seasons, when the water temperature is 18 to 28°C, conditions which permit virus propagation in cultured cells. Here we report that infectious virus is preserved in cultured cells maintained for 30 days at 30°C. CyHV-3-infected vacuolated cells with deformed morphology converted to normal, and plaques disappeared following shifting up of the temperature and reappeared after transfer to the permissive temperature. Viral propagation and viral gene transcription were turned off by shifting cells to the nonpermissive temperature. Upon return of the cells to the permissive temperature, transcription of viral genes was reactivated in a sequence distinguished from that occurring in naive cells following infection. Our results show that CyHV-3 persists in cultured cells maintained at the nonpermissive temperature and suggest that viruses could persist for long periods in the fish body, enabling a new burst of infection upon a shift to a permissive temperature.
UR - http://www.scopus.com/inward/record.url?scp=34247594177&partnerID=8YFLogxK
U2 - 10.1128/JVI.02188-06
DO - 10.1128/JVI.02188-06
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 17301126
AN - SCOPUS:34247594177
SN - 0022-538X
VL - 81
SP - 4828
EP - 4836
JO - Journal of Virology
JF - Journal of Virology
IS - 9
ER -