Personalization of image enhancement

Sing Bing Kang, Ashish Kapoor, Dani Lischinski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

73 Scopus citations

Abstract

We address the problem of incorporating user preference in automatic image enhancement. Unlike generic tools for automatically enhancing images, we seek to develop methods that can first observe user preferences on a training set, and then learn a model of these preferences to personalize enhancement of unseen images. The challenge of designing such system lies at intersection of computer vision, learning, and usability; we use techniques such as active sensor selection and distance metric learning in order to solve the problem. The experimental evaluation based on user studies indicates that different users do have different preferences in image enhancement, which suggests that personalization can further help improve the subjective quality of generic image enhancements.

Original languageEnglish
Title of host publication2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Pages1799-1806
Number of pages8
DOIs
StatePublished - 2010
Event2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010 - San Francisco, CA, United States
Duration: 13 Jun 201018 Jun 2010

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Country/TerritoryUnited States
CitySan Francisco, CA
Period13/06/1018/06/10

Fingerprint

Dive into the research topics of 'Personalization of image enhancement'. Together they form a unique fingerprint.

Cite this