Phase separation and convection in heterogeneous porous media: Implications for seafloor hydrothermal systems

Simon Emmanuel*, Brian Berkowitz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We examine experimentally the effect of phase separation of a binary fluid on convection and heat transfer in porous domains with heterogeneous permeability fields. In mid-ocean ridge hydrothermal systems, a dense brine phase and a coexisting vapor phase form during the phase separation of seawater at supercritical conditions; this process strongly influences the chemistry of vents and the convective transfer of heat. Furthermore, convection and phase separation are likely to occur in oceanic crust that is highly heterogeneous in nature. Because of high temperatures and pressures required for phase separation in saline systems, a binary fluid [H2o-2-butoxyethanol], with a lower consolute point of 48.5°C, was used as a proxy for seawater. A saturated pseudo-two-dimensional porous domain containing high permeability [k] zones embedded in a lower permeability matrix was heated from below and cooled from above. As with homogeneous systems, chemical stratification develops in heterogeneous domains, with dense fluid accumulating in low-velocity regions at the bottom of the porous matrix. Furthermore, in both types of porous media, the efficiency of thermal transport is reduced relative to single-phase systems. Heterogeneities in the permeability field, however, can act to amplify these effects; in systems with vertical high-k zones, the thickness of the dense-phase layer increases in the low-k regions, and thermal transport is suppressed even more. Also, the experiments show that regions of both high and low permeabilities can act as a store for brines and facilitate the formation of much thicker brine layers than are otherwise predicted by models based on homogeneous oceanic crust.

Original languageEnglish
Article numberB05210
JournalJournal of Geophysical Research: Solid Earth
Volume112
Issue number5
DOIs
StatePublished - 4 May 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Phase separation and convection in heterogeneous porous media: Implications for seafloor hydrothermal systems'. Together they form a unique fingerprint.

Cite this