Photochemical Reactions of Cyclohexanone: Mechanisms and Dynamics

Dorit Shemesh, Sergey A. Nizkorodov, R. Benny Gerber*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Photochemistry of carbonyl compounds is of major importance in atmospheric and organic chemistry. The photochemistry of cyclohexanone is studied here using on-the-fly molecular dynamics simulations on a semiempirical multireference configuration interaction potential-energy surface to predict the distribution of photoproducts and time scales for their formation. Rich photochemistry is predicted to occur on a picosecond time scale following the photoexcitation of cyclohexanone to the first singlet excited state. The main findings include: (1) Reaction channels found experimentally are confirmed by the theoretical simulations, and a new reaction channel is predicted. (2) The majority (87%) of the reactive trajectories start with a ring opening via C-Cα bond cleavage, supporting observations of previous studies. (3) Mechanistic details, time scales, and yields are predicted for all reaction channels. These benchmark results shed light on the photochemistry of isolated carbonyl compounds in the atmosphere and can be extended in the future to photochemistry of more complex atmospherically relevant carbonyl compounds in both gaseous and condensed-phase environments.

Original languageEnglish
Pages (from-to)7112-7120
Number of pages9
JournalJournal of Physical Chemistry A
Volume120
Issue number36
DOIs
StatePublished - 15 Sep 2016

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

Fingerprint

Dive into the research topics of 'Photochemical Reactions of Cyclohexanone: Mechanisms and Dynamics'. Together they form a unique fingerprint.

Cite this