Planar graphene-NbSe2 Josephson junctions in a parallel magnetic field

Tom Dvir, Ayelet Zalic, Eirik Holm Fyhn, Morten Amundsen, Takashi Taniguchi, Kenji Watanabe, Jacob Linder, Hadar Steinberg

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic fields due to Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe2 as superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate voltage, and both out-of-plane and in-plane magnetic fields. Notably, the 2DJJs sustain supercurrent up to parallel fields as high as 8.5 T, where the Zeeman energy EZ rivals the Thouless energy ETh, a regime hitherto inaccessible in graphene. As the parallel magnetic field H increases, the 2DJJ's critical current is suppressed and in a few cases undergoes suppression and recovery. We explore the behavior in H by considering theoretically two effects: a 0-π transition induced by tuning of the Zeeman energy and the unique effect of ripples in an atomically thin layer which create a small spatially varying perpendicular component of the field. The 2DJJs have potential utility as flexible probes for two-dimensional superconductivity in a variety of materials and introduce high H as a newly accessible experimental knob.

Original languageAmerican English
Article number115401
JournalPhysical Review B
Issue number11
StatePublished - 2 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021 American Physical Society.


Dive into the research topics of 'Planar graphene-NbSe2 Josephson junctions in a parallel magnetic field'. Together they form a unique fingerprint.

Cite this