Plant-derived human collagen scaffolds for skin tissue engineering

James J. Willard, Jason W. Drexler, Amitava Das, Sashwati Roy, Shani Shilo, Oded Shoseyov, Heather M. Powell*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission.

Original languageAmerican English
Pages (from-to)1507-1518
Number of pages12
JournalTissue Engineering - Part A.
Volume19
Issue number13-14
DOIs
StatePublished - 1 Jul 2013

Fingerprint

Dive into the research topics of 'Plant-derived human collagen scaffolds for skin tissue engineering'. Together they form a unique fingerprint.

Cite this