Plasma-based advanced accelerators at the Brookhaven Accelerator Test Facility

I. V. Pogorelsky*, M. Babzien, K. P. Kusche, I. V. Pavlishin, V. Yakimenko, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, T. Katsouleas, P. Muggli, E. Kallos, L. C. Steinhauer, A. Zigler, N. Andreev, D. B. Cline, F. Zhou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The Accelerator Test Facility at Brookhaven National Laboratory (BNL ATF) offers to its users a unique combination of research tools that include a high-brightness 70-MeV electron beam, a mid-infrared (λ = 10 μm) CO2 laser of terawatt power, and a capillary discharge as a plasma source. These cutting-edge technologies have enabled us to launch a new R&D program at the forefronts of advanced accelerators and radiation sources. The main subjects that we are researching are innovative methods of producing wakes in a linear regime using plasma resonance with the electron microbunch train periodic to the laser's wavelength and so-called "seeded" laser wakefield acceleration (LWFA) that is driven and probed by a combination of electron and laser beams. We describe the present status of the ATF experimental program, including simulations and preliminary experiments; in addition, we review previous ATF experiments that were the precursors to the present program. They encompass our demonstration of longitudinal-and transverse-field phasing inside the plasma wave, plasma channeling of intense CO2 laser beams, and the generation of e-beam microbunch trains by the inverse FEL technique.

Original languageEnglish
Pages (from-to)259-266
Number of pages8
JournalLaser Physics
Volume16
Issue number2
DOIs
StatePublished - Feb 2006

Fingerprint

Dive into the research topics of 'Plasma-based advanced accelerators at the Brookhaven Accelerator Test Facility'. Together they form a unique fingerprint.

Cite this