Abstract
We study the behavior of an economic platform (e.g., Amazon, Uber Eats, Instacart) under shocks, such as COVID-19 lockdowns, and the effect of different regulation considerations. To this end, we develop a multi-agent simulation environment of a platform economy in a multi-period setting where shocks may occur and disrupt the economy. Buyers and sellers are heterogeneous and modeled as economically-motivated agents, choosing whether or not to pay fees to access the platform. We use deep reinforcement learning to model the fee-setting and matching behavior of the platform, and consider two major types of regulation frameworks: (1) taxation policies and (2) platform fee restrictions. We offer a number of simulated experiments that cover different market settings and shed light on regulatory tradeoffs. Our results show that while many interventions are ineffective with a sophisticated platform actor, we identify a particular kind of regulation - fixing fees to the optimal, no-shock fees while still allowing a platform to choose how to match buyers and sellers - as holding promise for promoting the efficiency and resilience of the economic system.
Original language | English |
---|---|
Title of host publication | ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023 |
Publisher | Association for Computing Machinery, Inc |
Pages | 3592-3602 |
Number of pages | 11 |
ISBN (Electronic) | 9781450394161 |
DOIs | |
State | Published - 30 Apr 2023 |
Event | 2023 World Wide Web Conference, WWW 2023 - Austin, United States Duration: 30 Apr 2023 → 4 May 2023 |
Publication series
Name | ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023 |
---|
Conference
Conference | 2023 World Wide Web Conference, WWW 2023 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 30/04/23 → 4/05/23 |
Bibliographical note
Publisher Copyright:© 2023 ACM.
Keywords
- Platform economy
- agent-based modeling
- fee setting
- market shock
- matching
- multi-agent simulation
- reinforcement learning