TY - GEN
T1 - Playing games with approximation algorithms
AU - Kakade, Sham M.
AU - Kalai, Adam Tauman
AU - Ligett, Katrina
PY - 2007
Y1 - 2007
N2 - In an online linear optimization problem, on each period t, an online algorithm chooses s t S from a fixed (possibly infinite) set S of feasible decisions. Nature (who may be adversarial) chooses a weight vector w t R, and the algorithm incurs cost c(s t,w t), where c is a fixed cost function that is linear in the weight vector. In the full-information setting, the vector w t is then revealed to the algorithm, and in the bandit setting, only the cost experienced, c(s t,w t), is revealed. The goal of the online algorithm is to perform nearly as well as the best fixed s S in hindsight. Many repeated decision-making problems with weights fit naturally into this framework, such as online shortest-path, online TSP, online clustering, and online weighted set cover. Previously, it was shown how to convert any efficient exact offline optimization algorithm for such a problem into an efficient online bandit algorithm in both the full-information and the bandit settings, with average cost nearly as good as that of the best fixed s S in hindsight. However, in the case where the offline algorithm is an approximation algorithm with ratio α > 1, the previous approach only worked for special types of approximation algorithms. We show how to convert any offline approximation algorithm for a linear optimization problem into a corresponding online approximation algorithm, with a polynomial blowup in runtime. If the offline algorithm has an α-approximation guarantee, then the expected cost of the online algorithm on any sequence is not much larger than α times that of the best s S, where the best is chosen with the benefit of hindsight. Our main innovation is combining Zinkevich's algorithm for convex optimization with a geometric transformation that can be applied to any approximation algorithm. Standard techniques generalize the above result to the bandit setting, except that a "Barycentric Spanner" for the problem is also (provably) necessary as input.Our algorithm can also be viewed as a method for playing largerepeated games, where one can only compute approximate best-responses, rather than best-responses.
AB - In an online linear optimization problem, on each period t, an online algorithm chooses s t S from a fixed (possibly infinite) set S of feasible decisions. Nature (who may be adversarial) chooses a weight vector w t R, and the algorithm incurs cost c(s t,w t), where c is a fixed cost function that is linear in the weight vector. In the full-information setting, the vector w t is then revealed to the algorithm, and in the bandit setting, only the cost experienced, c(s t,w t), is revealed. The goal of the online algorithm is to perform nearly as well as the best fixed s S in hindsight. Many repeated decision-making problems with weights fit naturally into this framework, such as online shortest-path, online TSP, online clustering, and online weighted set cover. Previously, it was shown how to convert any efficient exact offline optimization algorithm for such a problem into an efficient online bandit algorithm in both the full-information and the bandit settings, with average cost nearly as good as that of the best fixed s S in hindsight. However, in the case where the offline algorithm is an approximation algorithm with ratio α > 1, the previous approach only worked for special types of approximation algorithms. We show how to convert any offline approximation algorithm for a linear optimization problem into a corresponding online approximation algorithm, with a polynomial blowup in runtime. If the offline algorithm has an α-approximation guarantee, then the expected cost of the online algorithm on any sequence is not much larger than α times that of the best s S, where the best is chosen with the benefit of hindsight. Our main innovation is combining Zinkevich's algorithm for convex optimization with a geometric transformation that can be applied to any approximation algorithm. Standard techniques generalize the above result to the bandit setting, except that a "Barycentric Spanner" for the problem is also (provably) necessary as input.Our algorithm can also be viewed as a method for playing largerepeated games, where one can only compute approximate best-responses, rather than best-responses.
KW - Approximation algorithms
KW - Online linear optimization
KW - Regret minimization
UR - http://www.scopus.com/inward/record.url?scp=35448983517&partnerID=8YFLogxK
U2 - 10.1145/1250790.1250870
DO - 10.1145/1250790.1250870
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:35448983517
SN - 1595936319
SN - 9781595936318
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 546
EP - 555
BT - STOC'07
T2 - STOC'07: 39th Annual ACM Symposium on Theory of Computing
Y2 - 11 June 2007 through 13 June 2007
ER -