Abstract
Tumor progression and metastasis are the major causes of death among cancer associated mortality. Metastatic cells acquire features of migration and invasion and usually undergo epithelia-mesenchymal transition (EMT). Acquirement of these various hallmarks rely on different cellular pathways, including TGF-β and Wnt signaling. Recently, we reported that WW domain-containing oxidoreductase (WWOX) acts as a tumor suppressor and has anti-metastatic activities involving regulation of several key microRNAs (miRNAs) in triple-negative breast cancer (TNBC). Here, we report that WWOX restoration in highly metastatic MDA-MB435S cancer cells alters mRNA expression profiles; further, WWOX interacts with various proteins to exert its tumor suppressor function. Careful alignment and analysis of gene and miRNA expression in these cells revealed profound changes in cellular pathways mediating adhesion, invasion and motility. We further demonstrate that WWOX, through regulation of miR-146a levels, regulates SMAD3, which is a member of the TGF-β signaling pathway. Moreover, proteomic analysis of WWOX partners revealed regulation of the Wnt-signaling activation through physical interaction with Disheveled. Altogether, these findings underscore a significant role for WWOX in antagonizing metastasis, further highlighting its role and therapeutic potential in suppressing tumor progression.
Original language | English |
---|---|
Article number | 43 |
Journal | Signal Transduction and Targeted Therapy |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2020 |
Bibliographical note
Funding Information:We are grateful for all the Aqeilan’s lab members for fruitful discussions. The Aqeilan lab is supported by the Israel science foundation grant (ISF grant agreement No. 15/ 1574), ICRF-City of Hope - Harvey L. Miller Family Foundation and European Research Council (ERC)-Consolidator Grant under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 682118).
Publisher Copyright:
© 2020, The Author(s).