TY - JOUR
T1 - Polarization of myosin II heavy chain-protein kinase C in chemotaxing Dictyostelium cells
AU - Rubin, Hila
AU - Ravid, Shoshana
PY - 2002/9/27
Y1 - 2002/9/27
N2 - Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin II heavy chain kinase (MHC-PKC) and myosin II translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin II, allowing cell polarization and movement in the direction of the cAMP source.
AB - Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin II heavy chain kinase (MHC-PKC) and myosin II translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin II, allowing cell polarization and movement in the direction of the cAMP source.
UR - http://www.scopus.com/inward/record.url?scp=0037184025&partnerID=8YFLogxK
U2 - 10.1074/jbc.M205986200
DO - 10.1074/jbc.M205986200
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12130648
AN - SCOPUS:0037184025
SN - 0021-9258
VL - 277
SP - 36005
EP - 36008
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 39
ER -