Pre- and postsynaptic serotoninergic excitation of globus pallidus neurons

Moshe Rav-Acha*, Hagai Bergman, Yosef Yarom

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


The basal ganglia (BG) play a critical role in the pathogenesis and pathophysiology of Parkinson's disease (PD). Recent studies indicate that serotoninergic systems modulate BG activity and may be implicated in the pathophysiology and treatment of PD. The globus pallidus (GP), the rodent homologue of the primate GPe, is the main central nucleus of the basal ganglia, affecting the striatum, the subthalamic nucleus (STN), and BG output structures. We therefore studied the effect of serotonin (5-HT) and specific 5-HT agonists and antagonists on GP neurons from rat brain slices. Using intra- and extracellular recordings of GP neurons we found that serotonin increases the firing rate of GP neurons. Analyzing the effects of specific 5-HT agonists and antagonists on the firing rate of GP neurons showed that the increase in firing rate is due to the activation of 5-HT1B and 5-HT1A receptors. Intracellular recordings in both voltage- and current-clamp modes revealed that serotonin mediates its effect via pre- and postsynaptic mechanisms. The presynaptic effect is mediated by attenuation of γ-aminobutyric acid release, probably through activation of 5-HT 1B receptors. Postsynaptically, serotonin activates a hyperpolarization-activated cation channel, probably via 5-HT1A receptors. Furthermore, serotonin decreases the fast synaptic depression characteristic of the striatal afferent input. The decreased serotonin concentrations in the BG nuclei in PD may contribute to depressed GP activity and enhance the emergence of BG pathological synchronous oscillations. We therefore suggest that future therapeutics of PD should be directed toward restoration of normal serotonin levels in BG nuclei.

Original languageAmerican English
Pages (from-to)1053-1066
Number of pages14
JournalJournal of Neurophysiology
Issue number2
StatePublished - Aug 2008


Dive into the research topics of 'Pre- and postsynaptic serotoninergic excitation of globus pallidus neurons'. Together they form a unique fingerprint.

Cite this