TY - JOUR
T1 - Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model
AU - London, Michael
AU - Larkum, Matthew E.
AU - Häusser, Michael
PY - 2008/11
Y1 - 2008/11
N2 - Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.
AB - Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.
KW - Layer 5 cortical pyramidal neuron
KW - Linear integrate-and-fire model
KW - Predicting every spike
KW - Synaptic information efficacy
UR - http://www.scopus.com/inward/record.url?scp=56449118134&partnerID=8YFLogxK
U2 - 10.1007/s00422-008-0268-3
DO - 10.1007/s00422-008-0268-3
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 19011927
AN - SCOPUS:56449118134
SN - 0340-1200
VL - 99
SP - 393
EP - 401
JO - Biological Cybernetics
JF - Biological Cybernetics
IS - 4-5
ER -