Preparation of poly(Ethylene glycol)@polyurea microcapsules using oil/oil emulsions and their application as microreactors

Ahmad Zarour, Suheir Omar, Raed Abu-Reziq*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The development process of catalytic core/shell microreactors, possessing a poly(ethylene glycol) (PEG) core and a polyurea (PU) shell, by implementing an emulsion-templated non-aqueous encapsulation method, is presented. The microreactors’ fabrication process begins with an emulsi-fication process utilizing an oil-in-oil (o/o) emulsion of PEG-in-heptane, stabilized by a polymeric surfactant. Next, a reaction between a poly(ethylene imine) (PEI) and a toluene-2,4-diisocyanate (TDI) takes place at the boundary of the emulsion droplets, resulting in the creation of a PU shell through an interfacial polymerization (IFP) process. The microreactors were loaded with palladium nanoparticles (NPs) and were utilized for the hydrogenation of alkenes and alkynes. Importantly, it was found that PEG has a positive effect on the catalytic performance of the developed microreactors. Interestingly, besides being an efficient green reaction medium, PEG plays two crucial roles: first, it reduces the palladium ions to palladium NPs; thus, it avoids the unnecessary use of additional reducing agents. Second, it stabilizes the palladium NPs and prevents their aggregation, allowing the formation of highly reactive palladium NPs. Strikingly, in one sense, the suggested system affords highly reactive semi-homogeneous catalysis, whereas in another sense, it enables the facile, rapid, and inexpensive recovery of the catalytic microreactor by simple centrifugation. The durable microreactors exhibit excellent activity and were recycled nine times without any loss in their reactivity.

Original languageAmerican English
Article number2566
JournalPolymers
Volume13
Issue number15
DOIs
StatePublished - 31 Jul 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Hydrogenation
  • Non-aqueous interfacial polymerization
  • Oil-in-oil emulsions
  • Poly(ethylene glycol)
  • Polyurea microcapsules

Fingerprint

Dive into the research topics of 'Preparation of poly(Ethylene glycol)@polyurea microcapsules using oil/oil emulsions and their application as microreactors'. Together they form a unique fingerprint.

Cite this