TY - JOUR
T1 - Prevention of diabetes-promoted colorectal cancer by (n-3) polyunsaturated fatty acids and (n-3) PUFA mimetic
AU - Algamas-Dimantov, Anna
AU - Yehuda-Shnaidman, Einav
AU - Hertz, Rachel
AU - Peri, Irena
AU - Bar-Tana, Jacob
AU - Schwartz, Betty
PY - 2014
Y1 - 2014
N2 - The global obesity/diabetes epidemic has resulted in robust increase in the incidence of colorectal cancer (CRC). Epidemiological, animal and human studies have indicated efficacy of (n-3) PUFA in chemoprevention of sporadic and genetic-driven CRC. However, diabetes-promoted CRC presents a treatment challenge that surpasses that of sporadic CRC. This report analyzes the efficacy of (n-3) PUFA generated by the fat-1 transgene that encodes an (n-6) to (n-3) PUFA desaturase, and of synthetic (n-3) PUFA mimetic (MEDICA analog), to suppress CRC development in carcinogeninduced diabetes-promoted animal model. Carcinogen-induced CRC is shown here to be promoted by the diabetes context, in terms of increased aberrant crypt foci (ACF) load, cell proliferation and epithelial dedifferentiation, being accompanied by increase in the expression of HNF4α, β-catenin, and β-catenin-responsive genes. Incorporating the fat-1 transgene in the diabetes context, or oral MEDICA treatment, resulted in ameliorating the diabetic phenotype and in abrogating CRC, with decrease in ACF load, cell proliferation and the expression of HNF-4α, β-catenin, and β-catenin-responsive genes. The specificity of (n-3) PUFA in abrogating CRC development, as contrasted with enhancing CRC by (n-6) PUFA, was similarly verified in CRC cell lines. These findings may indicate prospective therapeutic potential of (n-3) PUFA or MEDICA in the management of CRC, in particular diabetes-promoted CRC.
AB - The global obesity/diabetes epidemic has resulted in robust increase in the incidence of colorectal cancer (CRC). Epidemiological, animal and human studies have indicated efficacy of (n-3) PUFA in chemoprevention of sporadic and genetic-driven CRC. However, diabetes-promoted CRC presents a treatment challenge that surpasses that of sporadic CRC. This report analyzes the efficacy of (n-3) PUFA generated by the fat-1 transgene that encodes an (n-6) to (n-3) PUFA desaturase, and of synthetic (n-3) PUFA mimetic (MEDICA analog), to suppress CRC development in carcinogeninduced diabetes-promoted animal model. Carcinogen-induced CRC is shown here to be promoted by the diabetes context, in terms of increased aberrant crypt foci (ACF) load, cell proliferation and epithelial dedifferentiation, being accompanied by increase in the expression of HNF4α, β-catenin, and β-catenin-responsive genes. Incorporating the fat-1 transgene in the diabetes context, or oral MEDICA treatment, resulted in ameliorating the diabetic phenotype and in abrogating CRC, with decrease in ACF load, cell proliferation and the expression of HNF-4α, β-catenin, and β-catenin-responsive genes. The specificity of (n-3) PUFA in abrogating CRC development, as contrasted with enhancing CRC by (n-6) PUFA, was similarly verified in CRC cell lines. These findings may indicate prospective therapeutic potential of (n-3) PUFA or MEDICA in the management of CRC, in particular diabetes-promoted CRC.
KW - Colorectal cancer
KW - Diabetes
KW - Obesity
UR - http://www.scopus.com/inward/record.url?scp=84930430618&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.2453
DO - 10.18632/oncotarget.2453
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 25375205
AN - SCOPUS:84930430618
SN - 1949-2553
VL - 5
SP - 9851
EP - 9863
JO - Oncotarget
JF - Oncotarget
IS - 20
ER -