Probabilistic graph and hypergraph matching

Ron Zass*, Amnon Shashua

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

355 Scopus citations

Abstract

We consider the problem of finding a matching between two sets of features, given complex relations among them, going beyond pairwise. Each feature set is modeled by a hypergraph where the complex relations are represented by hyper-edges. A match between the feature sets is then modeled as a hypergraph matching problem. We derive the hyper-graph matching problem in a probabilistic setting represented by a convex optimization. First, we formalize a soft matching criterion that emerges from a probabilistic interpretation of the problem input and output, as opposed to previous methods that treat soft matching as a mere relaxation of the hard matching problem. Second, the model induces an algebraic relation between the hyper-edge weight matrix and the desired vertex-to-vertex probabilistic matching. Third, the model explains some of the graph matching normalization proposed in the past on a heuristic basis such as doubly stochastic normalizations of the edge weights. A key benefit of the model is that the global optimum of the matching criteria can be found via an iterative successive projection algorithm. The algorithm reduces to the well known Sinkhorn [15] row/column matrix normalization procedure in the special case when the two graphs have the same number of vertices and a complete matching is desired. Another benefit of our model is the straightforward scalability from graphs to hyper-graphs.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: 23 Jun 200828 Jun 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Conference

Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period23/06/0828/06/08

Fingerprint

Dive into the research topics of 'Probabilistic graph and hypergraph matching'. Together they form a unique fingerprint.

Cite this