TY - JOUR
T1 - Probing lipids relaxation times in breast cancer using magnetic resonance spectroscopic fingerprinting
AU - Nissan, Noam
AU - Kulpanovich, Alexey
AU - Agassi, Ravit
AU - Allweis, Tanir
AU - Haas, Ilana
AU - Carmon, Einat
AU - Furman-Haran, Edna
AU - Anaby, Debbie
AU - Sklair-Levy, Miri
AU - Tal, Assaf
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to European Society of Radiology.
PY - 2023/5
Y1 - 2023/5
N2 - Objectives: To investigate the clinical relevance of the relaxation times of lipids within breast cancer and normal fibroglandular tissue in vivo, using magnetic resonance spectroscopic fingerprinting (MRSF). Methods: Twelve patients with biopsy-confirmed breast cancer and 14 healthy controls were prospectively scanned at 3 T using a protocol consisting of diffusion tensor imaging (DTI), MRSF, and dynamic contrast-enhanced (DCE) MRI. Single-voxel MRSF data was recorded from the tumor (patients) — identified using DTI — or normal fibroglandular tissue (controls), in under 20 s. MRSF data was analyzed using in-house software. Linear mixed model analysis was used to compare the relaxation times of lipids in breast cancer VOIs vs. normal fibroglandular tissue. Results: Seven distinguished lipid metabolite peaks were identified and their relaxation times were recorded. Of them, several exhibited statistically significant changes between controls and patients, with strong significance (p < 10−3) recorded for several of the lipid resonances at 1.3 ppm (T1 = 355 ± 17 ms vs. 389 ± 27 ms), 4.1 ppm (T1 = 255 ± 86 ms vs. 127 ± 33 ms), 5.22 ppm (T1 = 724 ± 81 ms vs. 516 ± 62 ms), and 5.31 ppm (T2 = 56 ± 5 ms vs. 44 ± 3.5 ms, respectively). Conclusions: The application of MRSF to breast cancer imaging is feasible and achievable in clinically relevant scan time. Further studies are required to verify and comprehend the underling biological mechanism behind the differences in lipid relaxation times in cancer and normal fibroglandular tissue. Key Points: •The relaxation times of lipids in breast tissue are potential markers for quantitative characterization of the normal fibroglandular tissue and cancer. •Lipid relaxation times can be acquired rapidly in a clinically relevant manner using a single-voxel technique, termed MRSF. •Relaxation times of T1 at 1.3 ppm, 4.1 ppm, and 5.22 ppm, as well as of T2 at 5.31 ppm, were significantly different between measurements within breast cancer and the normal fibroglandular tissue.
AB - Objectives: To investigate the clinical relevance of the relaxation times of lipids within breast cancer and normal fibroglandular tissue in vivo, using magnetic resonance spectroscopic fingerprinting (MRSF). Methods: Twelve patients with biopsy-confirmed breast cancer and 14 healthy controls were prospectively scanned at 3 T using a protocol consisting of diffusion tensor imaging (DTI), MRSF, and dynamic contrast-enhanced (DCE) MRI. Single-voxel MRSF data was recorded from the tumor (patients) — identified using DTI — or normal fibroglandular tissue (controls), in under 20 s. MRSF data was analyzed using in-house software. Linear mixed model analysis was used to compare the relaxation times of lipids in breast cancer VOIs vs. normal fibroglandular tissue. Results: Seven distinguished lipid metabolite peaks were identified and their relaxation times were recorded. Of them, several exhibited statistically significant changes between controls and patients, with strong significance (p < 10−3) recorded for several of the lipid resonances at 1.3 ppm (T1 = 355 ± 17 ms vs. 389 ± 27 ms), 4.1 ppm (T1 = 255 ± 86 ms vs. 127 ± 33 ms), 5.22 ppm (T1 = 724 ± 81 ms vs. 516 ± 62 ms), and 5.31 ppm (T2 = 56 ± 5 ms vs. 44 ± 3.5 ms, respectively). Conclusions: The application of MRSF to breast cancer imaging is feasible and achievable in clinically relevant scan time. Further studies are required to verify and comprehend the underling biological mechanism behind the differences in lipid relaxation times in cancer and normal fibroglandular tissue. Key Points: •The relaxation times of lipids in breast tissue are potential markers for quantitative characterization of the normal fibroglandular tissue and cancer. •Lipid relaxation times can be acquired rapidly in a clinically relevant manner using a single-voxel technique, termed MRSF. •Relaxation times of T1 at 1.3 ppm, 4.1 ppm, and 5.22 ppm, as well as of T2 at 5.31 ppm, were significantly different between measurements within breast cancer and the normal fibroglandular tissue.
KW - Breast MRS
KW - Breast cancer imaging
KW - Lipids in breast cancer
KW - Magnetic resonance fingerprinting
KW - Magnetic resonance spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85151139974&partnerID=8YFLogxK
U2 - 10.1007/s00330-023-09560-w
DO - 10.1007/s00330-023-09560-w
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36976338
AN - SCOPUS:85151139974
SN - 0938-7994
VL - 33
SP - 3744
EP - 3753
JO - European Radiology
JF - European Radiology
IS - 5
ER -