TY - JOUR
T1 - Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate
AU - Sharma, Sandeep K.
AU - De Los Rios, Paolo
AU - Goloubinoff, Pierre
PY - 2011/6
Y1 - 2011/6
N2 - During mild heat-stress, a native thermolabile polypeptide may partially unfold and transiently expose water-avoiding hydrophobic segments that readily tend to associate into a stable misfolded species, rich in intra-molecular non-native beta-sheet structures. When the concentration of the heat-unfolded intermediates is elevated, the exposed hydrophobic segments tend to associate with other molecules into large stable insoluble complexes, also called "aggregates." In mammalian cells, stress- and mutation-induced protein misfolding and aggregation may cause degenerative diseases and aging. Young cells, however, effectively counteract toxic protein misfolding with a potent network of molecular chaperones that bind hydrophobic surfaces and actively unfold otherwise stable misfolded and aggregated polypeptides. Here, we followed the behavior of a purified, initially mostly native thermolabile luciferase mutant, in the presence or absence of the Escherichia coli DnaK-DnaJ-GrpE chaperones and/or of ATP, at 22°C or under mild heat-stress. We concomitantly measured luciferase enzymatic activity, Thioflavin-T fluorescence, and light-scattering to assess the effects of temperature and chaperones on the formation, respectively, of native, unfolded, misfolded, and/or of aggregated species. During mild heat-denaturation, DnaK-DnaJ-GrpE+ATP best maintained, although transiently, high luciferase activity and best prevented heat-induced misfolding and aggregation. In contrast, the ATP-less DnaK and DnaJ did not maintain optimal luciferase activity and were less effective at preventing luciferase misfolding and aggregation. We present a model accounting for the experimental data, where native, unfolded, misfolded, and aggregated species spontaneously inter-convert, and in which DnaK-DnaJ-GrpE+ATP specifically convert stable misfolded species into unstable unfolded intermediates.
AB - During mild heat-stress, a native thermolabile polypeptide may partially unfold and transiently expose water-avoiding hydrophobic segments that readily tend to associate into a stable misfolded species, rich in intra-molecular non-native beta-sheet structures. When the concentration of the heat-unfolded intermediates is elevated, the exposed hydrophobic segments tend to associate with other molecules into large stable insoluble complexes, also called "aggregates." In mammalian cells, stress- and mutation-induced protein misfolding and aggregation may cause degenerative diseases and aging. Young cells, however, effectively counteract toxic protein misfolding with a potent network of molecular chaperones that bind hydrophobic surfaces and actively unfold otherwise stable misfolded and aggregated polypeptides. Here, we followed the behavior of a purified, initially mostly native thermolabile luciferase mutant, in the presence or absence of the Escherichia coli DnaK-DnaJ-GrpE chaperones and/or of ATP, at 22°C or under mild heat-stress. We concomitantly measured luciferase enzymatic activity, Thioflavin-T fluorescence, and light-scattering to assess the effects of temperature and chaperones on the formation, respectively, of native, unfolded, misfolded, and/or of aggregated species. During mild heat-denaturation, DnaK-DnaJ-GrpE+ATP best maintained, although transiently, high luciferase activity and best prevented heat-induced misfolding and aggregation. In contrast, the ATP-less DnaK and DnaJ did not maintain optimal luciferase activity and were less effective at preventing luciferase misfolding and aggregation. We present a model accounting for the experimental data, where native, unfolded, misfolded, and aggregated species spontaneously inter-convert, and in which DnaK-DnaJ-GrpE+ATP specifically convert stable misfolded species into unstable unfolded intermediates.
KW - Chaperone
KW - DnaJ
KW - DnaK
KW - GrpE
KW - Luciferase
KW - Misfolding
KW - Protein aggregation
KW - Thioflavin-T
KW - Unfolding
UR - http://www.scopus.com/inward/record.url?scp=79955724860&partnerID=8YFLogxK
U2 - 10.1002/prot.23024
DO - 10.1002/prot.23024
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 21488102
AN - SCOPUS:79955724860
SN - 0887-3585
VL - 79
SP - 1991
EP - 1998
JO - Proteins: Structure, Function and Bioinformatics
JF - Proteins: Structure, Function and Bioinformatics
IS - 6
ER -