TY - JOUR
T1 - Promoting head CT exams in the emergency department triage using a machine learning model
AU - Klang, Eyal
AU - Barash, Yiftach
AU - Soffer, Shelly
AU - Bechler, Sigalit
AU - Resheff, Yehezkel S.
AU - Granot, Talia
AU - Shahar, Moni
AU - Klug, Maximiliano
AU - Guralnik, Gennadiy
AU - Zimlichman, Eyal
AU - Konen, Eli
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Purpose: In this study, we aimed to develop a novel prediction model to identify patients in need of a non-contrast head CT exam during emergency department (ED) triage. Methods: We collected data of all adult ED visits in our institution for five consecutive years (1/2013–12/2017). Retrieved variables included the following: demographics, mode of arrival to the ED, comorbidities, home medications, structured and unstructured chief complaints, vital signs, pain scale score, emergency severity index, ED wing assignment, documentation of previous ED visits, hospitalizations and CTs, and current visit non-contrast head CT usage. A machine learning gradient boosting model was trained on data from the years 2013–2016 and tested on data from 2017. Area under the curve (AUC) was used as metrics. Single-variable AUCs were also determined. Youden’s index evaluated optimal sensitivity and specificity of the models. Results: The final cohort included 595,561 ED visits. Non-contrast head CT usage rate was 11.8%. Each visit was coded into an input vector of 171 variables. Single-variable analysis showed that chief complaint had the best single predictive analysis (AUC = 0.87). The best model showed an AUC of 0.93 (95% CI 0.931–0.936) for predicting non-contrast head CT usage at triage level. The model had a sensitivity of 88.1% and specificity of 85.7% for non-contrast head CT utilization. Conclusion: The developed model can identify patients that need to undergo head CT exam already in the ED triage level and by that allow faster diagnosis and treatment.
AB - Purpose: In this study, we aimed to develop a novel prediction model to identify patients in need of a non-contrast head CT exam during emergency department (ED) triage. Methods: We collected data of all adult ED visits in our institution for five consecutive years (1/2013–12/2017). Retrieved variables included the following: demographics, mode of arrival to the ED, comorbidities, home medications, structured and unstructured chief complaints, vital signs, pain scale score, emergency severity index, ED wing assignment, documentation of previous ED visits, hospitalizations and CTs, and current visit non-contrast head CT usage. A machine learning gradient boosting model was trained on data from the years 2013–2016 and tested on data from 2017. Area under the curve (AUC) was used as metrics. Single-variable AUCs were also determined. Youden’s index evaluated optimal sensitivity and specificity of the models. Results: The final cohort included 595,561 ED visits. Non-contrast head CT usage rate was 11.8%. Each visit was coded into an input vector of 171 variables. Single-variable analysis showed that chief complaint had the best single predictive analysis (AUC = 0.87). The best model showed an AUC of 0.93 (95% CI 0.931–0.936) for predicting non-contrast head CT usage at triage level. The model had a sensitivity of 88.1% and specificity of 85.7% for non-contrast head CT utilization. Conclusion: The developed model can identify patients that need to undergo head CT exam already in the ED triage level and by that allow faster diagnosis and treatment.
KW - Computed tomography
KW - Decision support
KW - Emergency department
KW - Machine learning
KW - Models
KW - Spiral
UR - http://www.scopus.com/inward/record.url?scp=85074481035&partnerID=8YFLogxK
U2 - 10.1007/s00234-019-02293-y
DO - 10.1007/s00234-019-02293-y
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31598737
AN - SCOPUS:85074481035
SN - 0028-3940
VL - 62
SP - 153
EP - 160
JO - Neuroradiology
JF - Neuroradiology
IS - 2
ER -