TY - JOUR
T1 - Protein arginine methylation
T2 - a prominent modification and its demethylation
AU - Wesche, Juste
AU - Kühn, Sarah
AU - Kessler, Benedikt M.
AU - Salton, Maayan
AU - Wolf, Alexander
N1 - Publisher Copyright:
© 2017, Springer International Publishing.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
AB - Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
KW - Histone modifications
KW - KDM
KW - KDM2A
KW - KDM3A
KW - KDM4E
KW - KDM5C
KW - KDM6B
KW - KDM7B
KW - KMT
KW - Liquid chromatography–tandem mass spectrometry
KW - PHF8
KW - Post-translational modifications
UR - http://www.scopus.com/inward/record.url?scp=85016623059&partnerID=8YFLogxK
U2 - 10.1007/s00018-017-2515-z
DO - 10.1007/s00018-017-2515-z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 28364192
AN - SCOPUS:85016623059
SN - 1420-682X
VL - 74
SP - 3305
EP - 3315
JO - Cellular and Molecular Life Sciences
JF - Cellular and Molecular Life Sciences
IS - 18
ER -