TY - JOUR
T1 - Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique
AU - Zhao, Jian
AU - Wang, Zhenyu
AU - Mashayekhi, Hamid
AU - Mayer, Philipp
AU - Chefetz, Benny
AU - Xing, Baoshan
PY - 2012/5/15
Y1 - 2012/5/15
N2 - Adsorption of phenanthrene on carbon nanotubes (CNTs) was examined in the presence of pulmonary surfactant (Curosurf) and its main components, dipalmitoyl phosphatidylcholine (DPPC) and bovine serum albumin (BSA). A passive-dosing method based on equilibrium partitioning from a preloaded polymer was successfully employed to measure phenanthrene binding and speciation at controlled freely dissolved concentrations while avoiding phase separation steps. Curosurf, DPPC, and BSA could all linearly solubilize phenanthrene, and phenanthrene solubilization by Curosurf was 4 times higher than individual components (DPPC or BSA). In the presence of Curosurf, DPPC or BSA, adsorption of phenanthrene by multiwalled CNTs (MWCNTs) was suppressed, showing competitive adsorption between pulmonary surfactant (or DPPC, BSA) and phenanthrene. Competitive adsorption between Curosurf and phenanthrene was the strongest. Therefore, when phenanthrene-adsorbed CNTs enter the respiratory tract, phenanthrene can be desorbed due to both solubilization and competition. The bioaccessibility of phenanthrene adsorbed on three MWCNTs in the respiratory tract would be positively related to the size of their outer diameters. Moreover, the contribution of solubilization and competition to desorption of phenanthrene from MWCNTs was successfully separated for the first time. These findings demonstrate the two mechanisms on how pulmonary surfactants can enhance desorption and thus possibly biological absorption of phenanthrene adsorbed on CNTs.
AB - Adsorption of phenanthrene on carbon nanotubes (CNTs) was examined in the presence of pulmonary surfactant (Curosurf) and its main components, dipalmitoyl phosphatidylcholine (DPPC) and bovine serum albumin (BSA). A passive-dosing method based on equilibrium partitioning from a preloaded polymer was successfully employed to measure phenanthrene binding and speciation at controlled freely dissolved concentrations while avoiding phase separation steps. Curosurf, DPPC, and BSA could all linearly solubilize phenanthrene, and phenanthrene solubilization by Curosurf was 4 times higher than individual components (DPPC or BSA). In the presence of Curosurf, DPPC or BSA, adsorption of phenanthrene by multiwalled CNTs (MWCNTs) was suppressed, showing competitive adsorption between pulmonary surfactant (or DPPC, BSA) and phenanthrene. Competitive adsorption between Curosurf and phenanthrene was the strongest. Therefore, when phenanthrene-adsorbed CNTs enter the respiratory tract, phenanthrene can be desorbed due to both solubilization and competition. The bioaccessibility of phenanthrene adsorbed on three MWCNTs in the respiratory tract would be positively related to the size of their outer diameters. Moreover, the contribution of solubilization and competition to desorption of phenanthrene from MWCNTs was successfully separated for the first time. These findings demonstrate the two mechanisms on how pulmonary surfactants can enhance desorption and thus possibly biological absorption of phenanthrene adsorbed on CNTs.
UR - http://www.scopus.com/inward/record.url?scp=84861156879&partnerID=8YFLogxK
U2 - 10.1021/es2044773
DO - 10.1021/es2044773
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22519404
AN - SCOPUS:84861156879
SN - 0013-936X
VL - 46
SP - 5369
EP - 5377
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 10
ER -