Pyramidal inversion mechanism of simple chiral and achiral sulfoxides: A theoretical study

Hili Marom, P. Ulrich Biedermann, Israel Agranat*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The pyramidal inversion mechanism of simple sulfoxides was studied, employing ab initio and DFT methods. The convergence of the geometrical and energetic parameters of H2SO and DMSO with respect to the Hamiltonian and basis set was analyzed in order to determine a computational level suitable for methyl phenyl sulfoxide (3), methyl 4-cyanophenyl sulfoxide (4), diphenyl sulfoxide (5), 4,4′-dicyanodiphenyl sulfoxide (6), benzyl methyl sulfoxide (7) and benzyl phenyl sulfoxide (8). The DFT B3LYP/6-311G(d,p) level was chosen for further calculations of larger sulfoxides. The barriers ΔE calculated for the pyramidal inversion mechanism of sulfoxides 3-8 are in the range of 38.7-47.1 kcal/mol. These values are in good agreement with the experimental barriers for racemization via the pyramidal inversion mechanism. A resonance effect of a phenyl ring selectively stabilizes the transition state conformations, decreasing the energy barrier for pyramidal inversion by about 3 kcal/mol, compared to a similar molecule without a phenyl substituent. Introducing electron withdrawing groups (cyano) at the para positions of the phenyl ring(s) causes a further decrease of the energy barrier.

Original languageEnglish
Pages (from-to)559-569
Number of pages11
JournalChirality
Volume19
Issue number7
DOIs
StatePublished - 2007

Keywords

  • Ab initio
  • Chirality
  • DFT
  • Free energy of activation
  • Racemization
  • Sulfinyl group
  • Sulfoxide drugs

Fingerprint

Dive into the research topics of 'Pyramidal inversion mechanism of simple chiral and achiral sulfoxides: A theoretical study'. Together they form a unique fingerprint.

Cite this