QM/MM benchmarking of cyanobacteriochrome Slr1393g3 absorption spectra

Christian Wiebeler, Igor Schapiro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3. Based on an assessment of semiempirical methods to describe the chromophore geometries of both forms in vacuo, we find that DFTB2+D leads to structures that are the closest to the reference method. The benchmark of the excited state calculations is based on snapshots from quantum mechanics/molecular mechanics molecular dynamics simulations. In our case, the methods RI-ADC(2) and sTD-DFT based on CAM-B3LYP ground state calculations perform the best, whereas no functional can be recommended to simulate the absorption spectra of both forms with time-dependent density functional theory. Furthermore, the difference in absorption for the lowest energy absorption maxima of both forms can already be modelled with optimized structures, but sampling is required to improve the shape of the absorption bands of both forms, in particular for the second band. This benchmark study can guide further computational studies, as it assesses essential components of a protocol to model the spectral tuning of both cyanobacteriochromes and the related phytochromes.

Original languageAmerican English
Article number1720
Issue number9
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 by the Authors.


  • Cyanobacteriochrome
  • Excited states
  • Molecular dynamics
  • Photochemistry
  • Phytochrome
  • QM/MM
  • Slr1393g3
  • Spectral tuning


Dive into the research topics of 'QM/MM benchmarking of cyanobacteriochrome Slr1393g3 absorption spectra'. Together they form a unique fingerprint.

Cite this