Quantum automata cannot detect biased coins, even in the limit

Guy Kindler, Ryan O'Donnell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Aaronson and Drucker (2011) asked whether there exists a quantum finite automaton that can distinguish fair coin tosses from biased ones by spending significantly more time in accepting states, on average, given an infinite sequence of tosses. We answer this question negatively.

Original languageAmerican English
Title of host publication44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
EditorsAnca Muscholl, Piotr Indyk, Fabian Kuhn, Ioannis Chatzigiannakis
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770415
DOIs
StatePublished - 1 Jul 2017
Event44th International Colloquium on Automata, Languages, and Programming, ICALP 2017 - Warsaw, Poland
Duration: 10 Jul 201714 Jul 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume80
ISSN (Print)1868-8969

Conference

Conference44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
Country/TerritoryPoland
CityWarsaw
Period10/07/1714/07/17

Bibliographical note

Publisher Copyright:
© Guy Kindler and Ryan O'Donnell;.

Keywords

  • Quantum automata

Fingerprint

Dive into the research topics of 'Quantum automata cannot detect biased coins, even in the limit'. Together they form a unique fingerprint.

Cite this