Quantum optimal control theory

J. Werschnik*, E. K.U. Gross

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

338 Scopus citations

Abstract

The control of quantum dynamics via specially tailored laser pulses is a long-standing goal in physics and chemistry. Partly, this dream has come true, as sophisticated pulse-shaping experiments allow us to coherently control product ratios of chemical reactions. The theoretical design of the laser pulse to transfer an initial state to a given final state can be achieved with the help of quantum optimal control theory (QOCT). This tutorial provides an introduction to QOCT. It shows how the control equations defining such an optimal pulse follow from the variation of a properly defined functional. We explain the most successful schemes to solve these control equations and show how to incorporate additional constraints in the pulse design. The algorithms are then applied to simple quantum systems and the obtained pulses are analysed. Besides the traditional final-time control methods, the tutorial also presents an algorithm and an example to handle time-dependent control targets.

Original languageAmerican English
Pages (from-to)R175-R211
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Volume40
Issue number18
DOIs
StatePublished - 28 Sep 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantum optimal control theory'. Together they form a unique fingerprint.

Cite this