Abstract
Quantum spectroscopy with single two-level systems has considerably improved our ability to detect weak signals. Recently it was realized that for classical signals, precision and resolution of quantum spectroscopy is limited mainly by coherence of the signal and the stability of the clock used to measure time. The coherence time of the quantum probe, which can be significantly shorter, is not a major limiting factor in resolution measurements. Here, we address a similar question for spectroscopy of quantum signals, for example, a quantum sensor is used to detect a single nuclear spin. We present and analyze a novel correlation spectroscopy technique with performance that is limited by the coherence time of the target spins and the stability of the clock.
Original language | English |
---|---|
Article number | 013844 |
Journal | Physical Review A |
Volume | 98 |
Issue number | 1 |
DOIs | |
State | Published - 27 Jul 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Physical Society.