TY - JOUR
T1 - Radiative properties of pair-instability Supernova explosions
AU - Dessart, Luc
AU - Waldman, Roni
AU - Livne, Eli
AU - John Hillier, D.
AU - Blondin, Stéphane
PY - 2013/2/1
Y1 - 2013/2/1
N2 - We present non-local thermodynamic equilibrium time-dependent radiative transfer simulations of pair-instability supernovae (PISNe) stemming from red-supergiant (RSG), bluesupergiant andWolf-Rayet star rotation-free progenitors born in the mass range 160-230M⊙, at 10-4 Z⊙. Although subject to uncertainties in convection and stellar mass-loss rates, our initial conditions come from physically-consistent models that treat evolution from the main sequence, the onset of the pair-production instability, and the explosion phase. With our set of input models characterized by large 56Ni and ejecta masses, and large kinetic energies, we recover qualitatively the Type II-Plateau, II-peculiar and Ib/c light-curve morphologies, although they have larger peak bolometric luminosities (~109 to 1010 L⊙) and a longer duration (~200 d). We discuss the spectral properties for each model during the photospheric and nebular phases, including Balmer lines in II-P and II-pec at early times, the dominance of lines from intermediate-mass elements near the bolometric maximum, and the strengthening of metal line blanketing thereafter. Having similar He-core properties, all models exhibit similar post-peak spectra that are strongly blanketed by Fe II and Fe I lines, characterized by red colours, and that arise from photospheres/ejecta with a temperature of ⊙4000 K. Combined with the modest linewidths after the bolometric peak, these properties contrast with those of known superluminous SNe, suggesting that PISNe are yet to be discovered. Being reddish, PISNe will be difficult to observe at high redshift except when they stem from RSG explosions, in which case they could be used as metallicity probes and distance indicators.
AB - We present non-local thermodynamic equilibrium time-dependent radiative transfer simulations of pair-instability supernovae (PISNe) stemming from red-supergiant (RSG), bluesupergiant andWolf-Rayet star rotation-free progenitors born in the mass range 160-230M⊙, at 10-4 Z⊙. Although subject to uncertainties in convection and stellar mass-loss rates, our initial conditions come from physically-consistent models that treat evolution from the main sequence, the onset of the pair-production instability, and the explosion phase. With our set of input models characterized by large 56Ni and ejecta masses, and large kinetic energies, we recover qualitatively the Type II-Plateau, II-peculiar and Ib/c light-curve morphologies, although they have larger peak bolometric luminosities (~109 to 1010 L⊙) and a longer duration (~200 d). We discuss the spectral properties for each model during the photospheric and nebular phases, including Balmer lines in II-P and II-pec at early times, the dominance of lines from intermediate-mass elements near the bolometric maximum, and the strengthening of metal line blanketing thereafter. Having similar He-core properties, all models exhibit similar post-peak spectra that are strongly blanketed by Fe II and Fe I lines, characterized by red colours, and that arise from photospheres/ejecta with a temperature of ⊙4000 K. Combined with the modest linewidths after the bolometric peak, these properties contrast with those of known superluminous SNe, suggesting that PISNe are yet to be discovered. Being reddish, PISNe will be difficult to observe at high redshift except when they stem from RSG explosions, in which case they could be used as metallicity probes and distance indicators.
KW - Hydrodynamics
KW - Stars: atmospheres
KW - Stars: evolution
KW - Supernovae: individual: 2006gy
KW - Supernovae: individual: 2007bi
UR - http://www.scopus.com/inward/record.url?scp=84873742126&partnerID=8YFLogxK
U2 - 10.1093/mnras/sts269
DO - 10.1093/mnras/sts269
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84873742126
SN - 0035-8711
VL - 428
SP - 3227
EP - 3251
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -