TY - JOUR
T1 - Reaction of cyclic nitroxides with nitrogen dioxide
T2 - The intermediacy of the oxoammonium cations
AU - Goldstein, Sara
AU - Samuni, Amram
AU - Russo, Angelo
PY - 2003/7/9
Y1 - 2003/7/9
N2 - Piperidine and pyrrolidine nitroxides, such as 2,2,6,6-tetramethylpiperidinoxyl (TPO) and 3-carbamoylproxyl (3-CP), respectively, are cell-permeable stable radicals, which effectively protect cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The kinetics and mechanism of their reactions with .OH, superoxide, and carbon-centered radicals have been extensively studied, but not with .NO2, although the latter is a key intermediate in cellular nitrosative stress. In this research, .NO2 was generated by pulse radiolysis, and its reactions with TPO, 4-OH-TPO, 4-oxo-TPO, and 3-CP were studied by fast kinetic spectroscopy, either directly or by using ferrocyanide or 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate), which effectively scavenge the product of this reaction, the oxoammonium cation. The rate constants for the reactions of .NO2 with these nitroxides were determined to be (7-8) × 108 M-1 s-1, independent of the pH over the range 3.9-10.2. These are among the highest rate constants measured for .NO2 and are close to that of the reaction of .NO2 with .NO, that is, 1.1 × 109 M-1 s-1. The hydroxylamines TPO-H and 4-OH-TPO-H are less reactive toward .NO2, and an upper limit for the rate constant for these reactions was estimated to be 1 × 105 M-1 s-1. The kinetics results demonstrate that the reaction of nitroxides with .NO2 proceeds via an inner-sphere electron-transfer mechanism to form the respective oxoammonium cation, which is reduced back to the nitroxide through the oxidation of nitrite to .NO2. Hence, the nitroxide slows down the decomposition of .NO2 into nitrite and nitrate and could serve as a reservoir of .NO2 unless the respective oxoammonium is rapidly scavenged by other reductant. This mechanism can contribute toward the protective effect of nitroxides against reactive nitrogen-derived species, although the oxoammonium cations themselves might oxidize essential cellular targets if they are not scavenged by common biological reductants, such as thiols.
AB - Piperidine and pyrrolidine nitroxides, such as 2,2,6,6-tetramethylpiperidinoxyl (TPO) and 3-carbamoylproxyl (3-CP), respectively, are cell-permeable stable radicals, which effectively protect cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The kinetics and mechanism of their reactions with .OH, superoxide, and carbon-centered radicals have been extensively studied, but not with .NO2, although the latter is a key intermediate in cellular nitrosative stress. In this research, .NO2 was generated by pulse radiolysis, and its reactions with TPO, 4-OH-TPO, 4-oxo-TPO, and 3-CP were studied by fast kinetic spectroscopy, either directly or by using ferrocyanide or 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate), which effectively scavenge the product of this reaction, the oxoammonium cation. The rate constants for the reactions of .NO2 with these nitroxides were determined to be (7-8) × 108 M-1 s-1, independent of the pH over the range 3.9-10.2. These are among the highest rate constants measured for .NO2 and are close to that of the reaction of .NO2 with .NO, that is, 1.1 × 109 M-1 s-1. The hydroxylamines TPO-H and 4-OH-TPO-H are less reactive toward .NO2, and an upper limit for the rate constant for these reactions was estimated to be 1 × 105 M-1 s-1. The kinetics results demonstrate that the reaction of nitroxides with .NO2 proceeds via an inner-sphere electron-transfer mechanism to form the respective oxoammonium cation, which is reduced back to the nitroxide through the oxidation of nitrite to .NO2. Hence, the nitroxide slows down the decomposition of .NO2 into nitrite and nitrate and could serve as a reservoir of .NO2 unless the respective oxoammonium is rapidly scavenged by other reductant. This mechanism can contribute toward the protective effect of nitroxides against reactive nitrogen-derived species, although the oxoammonium cations themselves might oxidize essential cellular targets if they are not scavenged by common biological reductants, such as thiols.
UR - http://www.scopus.com/inward/record.url?scp=0038343847&partnerID=8YFLogxK
U2 - 10.1021/ja035286x
DO - 10.1021/ja035286x
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12837108
AN - SCOPUS:0038343847
SN - 0002-7863
VL - 125
SP - 8364
EP - 8370
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 27
ER -