Abstract
Media storms, dramatic outbursts of attention to a story, are central components of media dynamics and the attention landscape. Despite their importance, there has been little systematic and empirical research on this concept due to issues of measurement and operationalization. We introduce an iterative human-in-the-loop method to identify media storms in a large-scale corpus of news articles. The text is first transformed into signals of dispersion based on several textual characteristics. In each iteration, we apply unsupervised anomaly detection to these signals; each anomaly is then validated by an expert to confirm the presence of a storm, and those results are then used to tune the anomaly detection in the next iteration. We make available the resulting media storm dataset. Both the method and dataset provide a basis for comprehensive empirical study of media storms.
Original language | English |
---|---|
Title of host publication | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024 |
Editors | Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 4786-4797 |
Number of pages | 12 |
ISBN (Electronic) | 9798891761681 |
State | Published - 2024 |
Event | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States Duration: 12 Nov 2024 → 16 Nov 2024 |
Publication series
Name | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024 |
---|
Conference
Conference | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 |
---|---|
Country/Territory | United States |
City | Hybrid, Miami |
Period | 12/11/24 → 16/11/24 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.