Recent Progress in the Study of Molecularly Doped Metals

David Avnir*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

39 Scopus citations

Abstract

A unique materials' methodology enables the doping of metals with functional molecules, polymers, enzymes, and nanoparticles. The resulting materials have either the combined properties of the metal and the dopants, or new, sometimes synergetic properties that are not found in the separate components, emerge. Metals that have been doped so far include gold, silver, copper, iron, gallium, palladium, platinum, and several alloys. Numerous applications have been demonstrated including catalysis, biocatalysis, bioactivity, electrochemistry (including new type of batteries), corrosion resistance, induction of chirality, tailoring unconventional properties to metals, and more. Doping of metals and adsorption on them are completely different processes, doping being a 3D event, while adsorption is a 2D process. Thus, practically all special properties and functionalities that have been demonstrated are apparent only in the doped case. Here, progress made in this field in the past four years is reviewed, including methodologies for obtaining metallic doped thin films, enhancing corrosion resistance, biomedical applications, and the use of doped metals for complex catalytic network of reactions.

Original languageEnglish
Article number1706804
JournalAdvanced Materials
Volume30
Issue number41
DOIs
StatePublished - 11 Oct 2018

Bibliographical note

Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • biomaterials
  • catalysis
  • doping
  • metal
  • thin-film

Fingerprint

Dive into the research topics of 'Recent Progress in the Study of Molecularly Doped Metals'. Together they form a unique fingerprint.

Cite this