Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism

Bat Chen Cohen, Avi Shamay, Nurit Argov-Argaman

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Milk fat globule size is determined by the size of its precursors-intracellular lipid droplets-and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content.

Original languageAmerican English
Article numbere0121645
JournalPLoS ONE
Volume10
Issue number3
DOIs
StatePublished - 10 Mar 2015

Bibliographical note

Publisher Copyright:
© 2015 Cohen et al.

Fingerprint

Dive into the research topics of 'Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism'. Together they form a unique fingerprint.

Cite this