Reproductive performance of donor mares subsequent to eFSH treatment in early vernal transition: Comparison between the first, second, and mid-season estrous cycles of the breeding season

Tal Raz*, Barbara Hunter, Sylvia Carley, Claire Card

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


The objective was to compare the reproductive performances associated with the first (Cycle-1), second (Cycle-2), and mid-season (MS-Cycle) ovulations of the breeding season in donor mares that were treated with equine-FSH (eFSH) in the early vernal transition. Mares (n = 15) kept under ambient light were examined ultrasonographically per-rectum starting January 30. When an ovarian follicle ≥25 mm in diameter was detected, twice daily eFSH treatments were initiated. The eFSH treatments ceased when a follicle ≥35 mm was detected, and 36 h later hCG was administered. Thereafter, mares were artificially inseminated every 48 h until ovulation (Day 0). Trans-cervical embryo recovery attempts were performed on Day 8, and subsequently PGF2α was administered. Equine FSH was not administered in the subsequent estrous cycles. In Cycle-2 and in the MS-Cycle, hCG was administered when a follicle ≥35 mm was detected; breeding, embryo recovery, and PGF2α administration, were similar to Cycle-1. Mares had an untreated estrous cycle (no treatment or breeding) between Cycle-2 and the MS-Cycle. All mares developed follicle(s) ≥35 mm after 4.9 ± 0.6 days of eFSH treatment, and subsequently ovulations occurred; mean (95% CI) interval from treatment initiation to ovulation was 7.9 (6.5-9.3) days. The number of preovulatory follicles (≥30 mm) at the time of hCG administration (Cycle-1: 2.2 ± 0.3 compared with Cycle-2: 1.0 ± 0 compared with MS-Cycle: 1.1 ± 0.1 follicles), and the number of ovulations (2.5 ± 0.4 compared with 1.0 ± 0 compared with 1.1 ± 0.1 ovulations) were greater (p < 0.05) in Cycle-1. Nevertheless, mean embryo numbers did not differ among cycles (0.8 ± 0.2 compared with 0.5 ± 0.1 compared with 0.5 ± 0.1 embryo/mare). On average, embryo morphology grade was less (p < 0.05) in Cycle-1 as compared to non-eFSH cycles (combined Cycle-2 and MS-Cycle). This impaired embryo quality could be due to a seasonal effect, or negative effect of the eFSH treatment, which was possibly related to alterations in the hormonal environment (estradiol-17β and progesterone). A prolonged IOI (>21 days) was recorded in 7 of 15 mares following the Cycle-1 ovulation, but not subsequently. In conclusion, eFSH treatment of vernal transitional donor mares stimulated ovulation within only few days of treatment, and the following embryo recovery rate was at least as good as in the subsequent estrous cycles; however, on average, embryos were morphologically impaired. In subsequent estrous cycles in the breeding season, ovulations, embryo recovery rates, and embryo variables did not appear to be negatively affected; however, the first inter-ovulatory interval of the breeding season was prolonged in approximately half of the mares.

Original languageAmerican English
Pages (from-to)107-118
Number of pages12
JournalAnimal Reproduction Science
Issue number1-2
StatePublished - Nov 2009
Externally publishedYes


  • Embryo transfer
  • Mare
  • Superovulation
  • Vernal transition
  • eFSH


Dive into the research topics of 'Reproductive performance of donor mares subsequent to eFSH treatment in early vernal transition: Comparison between the first, second, and mid-season estrous cycles of the breeding season'. Together they form a unique fingerprint.

Cite this