Residual cells and nutrient availability guide wound healing in bacterial biofilms

Yusong Ye, Mnar Ghrayeb, Sarah Miercke, Sania Arif, Susann Müller, Thorsten Mascher, Liraz Chai*, Vasily Zaburdaev*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Biofilms are multicellular heterogeneous bacterial communities characterized by social-like division of labor, and remarkable robustness with respect to external stresses. Increasingly often an analogy between biofilms and arguably more complex eukaryotic tissues is being drawn. One illustrative example of where this analogy can be practically useful is the process of wound healing. While it has been extensively studied in eukaryotic tissues, the mechanism of wound healing in biofilms is virtually unexplored. Combining experiments in Bacillus subtilis bacteria, a model organism for biofilm formation, and a lattice-based theoretical model of biofilm growth, we studied how biofilms recover after macroscopic damage. We suggest that nutrient gradients and the abundance of proliferating cells are key factors augmenting wound closure. Accordingly, in the model, cell quiescence, nutrient fluxes, and biomass represented by cells and self-secreted extracellular matrix are necessary to qualitatively recapitulate the experimental results for damage repair. One of the surprising experimental findings is that residual cells, persisting in a damaged area after removal of a part of the biofilm, prominently affect the healing process. Taken together, our results outline the important roles of nutrient gradients and residual cells on biomass regrowth on macroscopic scales of the whole biofilm. The proposed combined experiment-simulation framework opens the way to further investigate the possible relation between wound healing, cell signaling and cell phenotype alternation in the local microenvironment of the wound.

Original languageAmerican English
JournalSoft Matter
DOIs
StateAccepted/In press - 2023

Bibliographical note

Publisher Copyright:
© 2024 The Royal Society of Chemistry.

Fingerprint

Dive into the research topics of 'Residual cells and nutrient availability guide wound healing in bacterial biofilms'. Together they form a unique fingerprint.

Cite this