TY - JOUR
T1 - Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel
AU - Iberkleid, Ionit
AU - Ozalvo, Rachel
AU - Feldman, Lidia
AU - Elbaz, Moshe
AU - Patricia, Bucki
AU - Horowitz, Sigal Brown
PY - 2014/5
Y1 - 2014/5
N2 - The behavior of naturally virulent Meloidogyne isolates toward the tomato resistance gene Mi in major tomato-growing areas in Israel was studied for the first time. Virulence of seven selected isolates was confirmed over three successive generations on resistant (Mi-carrying) and susceptible (non-Mi-carrying) tomato cultivars. Diagnostic markers verified the predominance of Meloidogyne javanica among virulent isolates selected on resistant tomato cultivars or rootstocks. To better understand the determinants of nematode selection on Mi-carrying plants, reproduction of Mi-avirulent and virulent isolates Mjav1 and Mjv2, respectively, measured as eggs per gram of root, on non-Mi-carrying, heterozygous (Mi/mi) and homozygous (Mi/Mi) genotypes was evaluated. Although no reproduction of Mjav1 was observed on Mi/Mi genotypes, some reproduction was consistently observed on Mi/mi plants; reproduction of Mjv2 on the homozygous and heterozygous genotypes was similar to that on susceptible cultivars, suggesting a limited quantitative effect of the Mi gene. Histological examination of giant cells induced by Mivirulent versus avirulent isolates confirmed the high virulence of Mjv2 on Mi/mi and Mi/Mi genotypes, allowing the formation of well-developed giant-cell systems despite the Mi gene. Analysis of the plant defense response in tomato Mi/Mi, Mi/mi, and mi/mi genotypes to both avirulent and virulent isolates was investigated by quantitative real-time polymerase chain reaction. Although the jasmonate (JA)-signaling pathway was clearly upregulated by avirulent and virulent isolates on the susceptible (not carrying Mi) and heterozygous (Mi/mi) plants, no change in signaling was observed in the homozygous (Mi/Mi) resistant line following incompatible interaction with the avirulent isolate. Thus, similar to infection promoted by the avirulent isolate on the susceptible genotype, the Mi-virulent isolate induced the JA-dependent pathway, which might promote tomato susceptibility during the compatible interaction with the homozygous (Mi/Mi) resistant line. These results have important consequences for the management of Mi resistance genes for ensuring sustainable tomato farming.
AB - The behavior of naturally virulent Meloidogyne isolates toward the tomato resistance gene Mi in major tomato-growing areas in Israel was studied for the first time. Virulence of seven selected isolates was confirmed over three successive generations on resistant (Mi-carrying) and susceptible (non-Mi-carrying) tomato cultivars. Diagnostic markers verified the predominance of Meloidogyne javanica among virulent isolates selected on resistant tomato cultivars or rootstocks. To better understand the determinants of nematode selection on Mi-carrying plants, reproduction of Mi-avirulent and virulent isolates Mjav1 and Mjv2, respectively, measured as eggs per gram of root, on non-Mi-carrying, heterozygous (Mi/mi) and homozygous (Mi/Mi) genotypes was evaluated. Although no reproduction of Mjav1 was observed on Mi/Mi genotypes, some reproduction was consistently observed on Mi/mi plants; reproduction of Mjv2 on the homozygous and heterozygous genotypes was similar to that on susceptible cultivars, suggesting a limited quantitative effect of the Mi gene. Histological examination of giant cells induced by Mivirulent versus avirulent isolates confirmed the high virulence of Mjv2 on Mi/mi and Mi/Mi genotypes, allowing the formation of well-developed giant-cell systems despite the Mi gene. Analysis of the plant defense response in tomato Mi/Mi, Mi/mi, and mi/mi genotypes to both avirulent and virulent isolates was investigated by quantitative real-time polymerase chain reaction. Although the jasmonate (JA)-signaling pathway was clearly upregulated by avirulent and virulent isolates on the susceptible (not carrying Mi) and heterozygous (Mi/mi) plants, no change in signaling was observed in the homozygous (Mi/Mi) resistant line following incompatible interaction with the avirulent isolate. Thus, similar to infection promoted by the avirulent isolate on the susceptible genotype, the Mi-virulent isolate induced the JA-dependent pathway, which might promote tomato susceptibility during the compatible interaction with the homozygous (Mi/Mi) resistant line. These results have important consequences for the management of Mi resistance genes for ensuring sustainable tomato farming.
KW - Dosage effect
KW - Root-knot nematode
UR - http://www.scopus.com/inward/record.url?scp=84899490802&partnerID=8YFLogxK
U2 - 10.1094/PHYTO-07-13-0181-R
DO - 10.1094/PHYTO-07-13-0181-R
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 24724816
AN - SCOPUS:84899490802
SN - 0031-949X
VL - 104
SP - 484
EP - 496
JO - Phytopathology
JF - Phytopathology
IS - 5
ER -