RIC-3 expression and splicing regulate nAChR functional expression

Yael Ben-David, Tehila Mizrachi, Sarah Kagan, Tamar Krisher, Emiliano Cohen, Talma Brenner, Millet Treinin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Background: The nicotinic acetylcholine receptors form a large and diverse family of acetylcholine gated ion channels having diverse roles in the central nervous system. Maturation of nicotinic acetylcholine receptors is a complex and inefficient process requiring assistance from multiple cellular factors including RIC-3, a functionally conserved endoplasmic reticulum-resident protein and nicotinic acetylcholine receptor-specific chaperone. In mammals and in Drosophila melanogaster RIC-3 is alternatively spliced to produce multiple isoforms. Results: We used electrophysiological analysis in Xenopus laevis oocytes, in situ hybridization, and quantitative real-time polymerase chain reaction assays to investigate regulation of RIC-3's expression and splicing and its effects on the expression of three major neuronal nicotinic acetylcholine receptors. We found that RIC-3 expression level and splicing affect nicotinic acetylcholine receptor functional expression and that two conserved RIC-3 isoforms express in the brain differentially. Moreover, in immune cells RIC-3 expression and splicing are regulated by inflammatory signals. Conclusions: Regulation of expression level and splicing of RIC-3 in brain and in immune cells following inflammation enables regulation of nicotinic acetylcholine receptor functional expression. Specifically, in immune cells such regulation via effects on α7 nicotinic acetylcholine receptor, known to function in the cholinergic anti-inflammatory pathway, may have a role in neuroinflammatory diseases.

Original languageAmerican English
Article number47
JournalMolecular Brain
Issue number1
StatePublished - 29 Apr 2016

Bibliographical note

Funding Information:
This work was funded by the Israel Science Foundation grant 352/10 and the United States-Israel Binational Science Foundation grant 2013055.

Publisher Copyright:
© 2016 Ben-David et al.


  • Acetylcholine
  • Alternative splicing
  • Disordered protein
  • Inflammation
  • Nicotinic acetylcholine receptors (nAChR)
  • Protein maturation
  • RIC-3


Dive into the research topics of 'RIC-3 expression and splicing regulate nAChR functional expression'. Together they form a unique fingerprint.

Cite this