Rigorous approximated determinization of weighted automata

Benjamin Aminof, Orna Kupferman*, Robby Lampert

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


A nondeterministic weighted finite automaton (WFA) maps an input word to a numerical value. Applications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. Many of these applications require the WFAs to be deterministic, or work substantially better when the WFAs are deterministic. Unlike NFAs, which can always be determinized, not all WFAs have an equivalent deterministic weighted automaton (DWFA). In Mohri (1997) [22], Mohri describes a determinization construction for a subclass of WFA. He also describes a property of WFAs (the twins property), such that all WFAs that satisfy the twins property are determinizable and the algorithm terminates on them. Unfortunately, many natural WFAs cannot be determinized. In this paper we study approximated determinization of WFAs. We describe an algorithm that, given a WFA A and an approximation factor t≥1, constructs a DWFA A′ that t-determinizes A. Formally, for all words Σ, the value of w in A′ is at least its value in A and at most t times its value in A. Our construction involves two new ideas: attributing states in the subset construction by both upper and lower residues, and collapsing attributed subsets whose residues can be tightened. The larger the approximation factor is, the more attributed subsets we can collapse. Thus, t-determinization is helpful not only for WFAs that cannot be determinized, but also in cases determinization is possible but results in automata that are too big to handle. We also describe a property (the t-twins property) and use it in order to characterize t-determinizable WFAs. Finally, we describe a polynomial algorithm for deciding whether a given WFA has the t-twins property.

Original languageAmerican English
Pages (from-to)104-117
Number of pages14
JournalTheoretical Computer Science
StatePublished - 8 Apr 2013

Bibliographical note

Funding Information:
The research of the third author was supported by the John von Neumann Minerva Center for the Development of Reactive Systems at the Weizmann Institute of Science, and by an Advanced Research Grant from the European Research Council (ERC) under the European Community’s 7th Framework Programme.


  • Approximation
  • Determinization
  • Weighted automata


Dive into the research topics of 'Rigorous approximated determinization of weighted automata'. Together they form a unique fingerprint.

Cite this