RNA binding properties of conserved protein subunits of human RNase P

Robert Reiner, Noa Alfiya-Mor, Mishka Berrebi-Demma, Donna Wesolowski, Sidney Altman, Nayef Jarrous*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.

Original languageEnglish
Pages (from-to)5704-5714
Number of pages11
JournalNucleic Acids Research
Volume39
Issue number13
DOIs
StatePublished - Jul 2011

Bibliographical note

Funding Information:
Israel Science Foundation (grant no. 673/06); United States–Israel Binational Science Foundation (grant no. 2005/009 to N.J.). Funding for open access charge: Israel Science Foundation.

Fingerprint

Dive into the research topics of 'RNA binding properties of conserved protein subunits of human RNase P'. Together they form a unique fingerprint.

Cite this