Abstract
In recent years, deep reinforcement learning (DRL) approaches have generated highly successful controllers for a myriad of complex domains. However, the opaque nature of these models limits their applicability in aerospace systems and sasfety-critical domains, in which a single mistake can have dire consequences. In this paper, we present novel advancements in both the training and verification of DRL controllers, which can help ensure their safe behavior. We showcase a design-for-verification approach utilizing k-induction and demonstrate its use in verifying liveness properties. In addition, we also give a brief overview of neural Lyapunov Barrier certificates and summarize their capabilities on a case study. Finally, we describe several other novel reachability-based approaches which, despite failing to provide guarantees of interest, could be effective for verification of other DRL systems, and could be of further interest to the community.
Original language | English |
---|---|
Title of host publication | DASC 2024 - Digital Avionics Systems Conference, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350349610 |
DOIs | |
State | Published - 2024 |
Event | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 - San Diego, United States Duration: 29 Sep 2024 → 3 Oct 2024 |
Publication series
Name | AIAA/IEEE Digital Avionics Systems Conference - Proceedings |
---|---|
ISSN (Print) | 2155-7195 |
ISSN (Electronic) | 2155-7209 |
Conference
Conference | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 29/09/24 → 3/10/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- AI Safety
- Deep Neural Network Verification
- Deep Reinforcement Learning
- Formal Verification