TY - JOUR
T1 - Screening for active small molecules in mitochondrial complex I deficient patient's fibroblasts, reveals AICAR as the most beneficial compound
AU - Golubitzky, Anna
AU - Dan, Phyllis
AU - Weissman, Sarah
AU - Link, Gabriela
AU - Wikstrom, Jakob D.
AU - Saada, Ann
PY - 2011
Y1 - 2011
N2 - Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations. 5-Aminoimidazole-4-carboxamide ribotide (AICAR) was found to be the most beneficial compound improving growth and ATP content while decreasing ROS production. AICAR also increased mitochondrial biogenesis without altering mitochondrial membrane potential (Δψ). Fluorescence microscopy data supported increased mitochondrial biogenesis and activation of the AMP activated protein kinase (AMPK). Other compounds such as; bezafibrate and oltipraz were rated as favorable while polyphenolic phytochemicals (resverastrol, grape seed extract, genistein and epigallocatechin gallate) were found not significant or detrimental. Although the results have to be verified by more thorough investigation of additional OXPHOS parameters, preliminary rapid screening of potential therapeutic compounds in individual patient's fibroblasts could direct and advance personalized medical treatment.
AB - Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations. 5-Aminoimidazole-4-carboxamide ribotide (AICAR) was found to be the most beneficial compound improving growth and ATP content while decreasing ROS production. AICAR also increased mitochondrial biogenesis without altering mitochondrial membrane potential (Δψ). Fluorescence microscopy data supported increased mitochondrial biogenesis and activation of the AMP activated protein kinase (AMPK). Other compounds such as; bezafibrate and oltipraz were rated as favorable while polyphenolic phytochemicals (resverastrol, grape seed extract, genistein and epigallocatechin gallate) were found not significant or detrimental. Although the results have to be verified by more thorough investigation of additional OXPHOS parameters, preliminary rapid screening of potential therapeutic compounds in individual patient's fibroblasts could direct and advance personalized medical treatment.
UR - http://www.scopus.com/inward/record.url?scp=80055050942&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0026883
DO - 10.1371/journal.pone.0026883
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22046392
AN - SCOPUS:80055050942
SN - 1932-6203
VL - 6
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e26883
ER -